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Introduction

Hamiltonian formulation of classical mechanics is very useful since it gives
a nice geometric description of time evolution and provides a natural way
to extend a classical theory to quantum theory.

Originally, the Hamiltonian formulation was given only for isolated
systems, and later extended to systems with time-dependent potentials,
but no dissipative forces.

There have been many attempts to introduce dissipation into Hamiltonian
formulation. Here we present one that arises quite naturally as a geometric
generalization of the known cases.
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Non-dissipative time-independent systems
The dynamics of isolated (non-dissipative and time-independent) systems
can be given in terms of a Hamiltonian function defined on a phase space
M. The phase space is 2n-dimensional symplectic manifold with a
symplectic form ω (non-closed and non-degenerate (ωn 6= 0)).
Darboux theorem:

For every point of a 2n-dimensional symplectic mani-
fold there exists a neighbourhood on which it is possible
to choose a coordinate system (q1, . . . , qn, p1, . . . , pn) in
which the symplectic form can be expressed as:

ω = dpi ∧ dqi .

Since ω is closed, we can locally define a canonical 1-form α such that
ω = dα. In Darboux coordinates it has the form:

α = pi dqi .
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For a Hamiltonian function H ∈ C∞(M) we can define a Hamiltonian
vector field XH ∈ Γ(TM) as:

ιXHω = −dH ,

XH = ∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
.

The trajectories of the system are the integral curves of this vector field
which in Darboux coordinates gives the Hamilton equations of motion:

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi .

Grgur Šimunić (Ruđer Bošković Institute) November 10, 2020 4 / 20



Every symplectic manifold is also a Poisson manifold since the Poisson
bivector P ∈ Γ(TM ∧ TM) can be defined as:

ιP(ξ)ω = ξ ,∀ξ ∈ Γ(T ∗M) ,

P = ∂

∂qi ∧
∂

∂pi
.

This defines a Poisson bracket of two functions f , g ∈ C∞(M):

{f , g} = P(f , g) .

The Jacobi identity of the Poisson bracket translates to the following
property of the Poisson bivector:

[P,P]S = Pρσ∂ρPµν∂µ ∧ ∂ν ∧ ∂σ = 0 .
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Canonical transformations:

Diffeomorphism transformations that leave symplectic
form invariant.

Locally, they look like a change in Darboux coordinates.
Since the symplectic is invariant, a canonical 1-form is
shifted by a closed 1-form:

pi dqi = Pi dQi + dF1(q,Q) ,

pi = ∂F1
∂qi , Pi = −∂F1

∂Qi .
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Non-dissipative time-dependent systems
We extend the phase to include time explicitly so that the manifold of
interest is ME = M × R.

The canonical 1-form is extended into the Poincaré-Cartan 1-form:
η = pi dqi − H(q, p, t) dt ,
dη = ω − dH ∧ dt .

Hamiltonian vector fields:
ιXE

H
dη = 0 ,

XE
H = ∂H

∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
+ ∂

∂t .

Canonical transformations:
pi dqi − H dt = Pi dQi − K dt + dF1(q,Q, t) ,

pi = ∂F1
∂qi , Pi = −∂F1

∂Qi , K = H + ∂F1
∂t .
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What is the geometrical structure of ME?

In symplectic case, ω was closed and degenerate. Closure
of ω directly translates to the closure of dη, which is
trivial.

Non-degeneracy of ω (ωn 6= 0) can also be generalized
to:

η ∧ dηn = −Hωn ∧ dt .

The existence of such 1-form makes ME the so called
contact manifold.

Grgur Šimunić (Ruđer Bošković Institute) November 10, 2020 8 / 20



Example: 1D dissipative system

Consider a particle in 1 dimension in a potential V and a friction force
proportional to the velocity of a particle. The equation of motion has the
form:

mq̈ = −∂V
∂q −mγq .

We can rewrite this second-order equation as a system of two first-order
equations in order to get the same form as the Hamilton’s equations of
motion:

q̇ = p
m ,

ṗ = −γp − ∂V
∂q .
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Caldirola-Kanai coordinates:

qCK = q , pCK = eγtp .

Equations of motion:

q̇CK = pCK
m e−γt ,

ṗCK = − ∂V
∂qCK

eγt .

In these new coordinates there exists a Hamiltonian function that
generates these equations of motion:

H(qCK , pCK , t) = 1
2mp2

CK e−γt + V (qCK )eγt .

We introduced the change in coordinates that transformed a dissipative
time-independent system into a non-dissipative time-dependent system,
but this transformation was not canonical.
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Dissipative time-independent systems
Let T be a (2n + 1)-dimensional contact manifold with a contact form η.

The generalization of the Darboux theorem for contact manifolds states
that it is locally possible to choose coordinates (q1, . . . , qn, p1, . . . , pn,S)
such that the contact form takes the form:

η = dS − pi dqi .

The contact form defines an isomorphism g : Γ(TM)→ Γ(T ∗M):
g(v) = ιv dη + (ιvη)η ,

g = 1
2η ∨ η − ω .

This isomorphism defines the so called Reeb vector field V ∈ Γ(TM):

V = g−1(η) = ∂

∂S .

This is equivalent to the statement that:
ιV η = 1 , ιV dη = 0 .
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Contact transformations:

The change in coordinates (q, p, S) → (Q,P,S ′) that
leave contact form invariant, up to a multiplication func-
tion:

η → f η ,
dS ′ − Pi dQi = f ( dS − pi dqi ) .

Here, S ′(q,Q,S) can be used as a generating function:

f = ∂S ′
∂S , fpi = −∂S ′

∂qi , Pi = ∂S ′
∂Qi .

The special case when f = 1:

S ′(q,Q, S) = S − F1(q,Q)

corresponds to a canonical transformation.
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Hamiltonian vector field XH ∈ Γ(TT ) for a contact Hamiltonian function
H ∈ C∞(T ):

LXHη = f η , H = −ιXHη .

Equivalently, these equations can be rewritten as:

XH = g−1( dH+ (f −H)η) .

The function f that appears here is not arbitrary, but it turns out to be:

f = −ιV dH = −∂H
∂S .

The Hamiltonian vector field in Darboux coordinates takes the form:

XH = ∂H
∂pi

∂

∂qi −
(
∂H
∂qi + pi

∂H
∂S

)
∂

∂pi
+
(

pi
∂H
∂pi
−H

)
∂

∂S
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The trajectories of the system are just integral curves of the Hamiltonian
vector field which gives us the equations of motion:

q̇i = ∂H
∂pi

,

ṗi = −∂H
∂qi − pi

∂H
∂S ,

Ṡ = pi
∂H
∂pi
−H .

The time derivative of a general function along a trajectory is then equal
to:

dF
dt = ∂F

∂qi
∂H
∂pi
− ∂F
∂pi

∂H
∂qi − pi

∂F
∂pi

∂H
∂S + pi

∂F
∂S

∂H
∂pi
−H∂F

∂S
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Instead of the Poisson structure, contact manifolds admit a Jacobi
structure. A Jacobi manifold is a manifold equipped with a Jacobi bivector
π ∈ Γ(TT ∧ TT ) and a vector field V ∈ Γ(TT ) such that:

[π, π]S = πρσ∂ρπ
µν∂µ ∧ ∂ν ∧ ∂σ = 2V ∧ π ,

[π,V ]S =
(1
2V σ∂σπ

µν + πσµ∂σV ν
)
∂µ ∧ ∂ν = 0 .

The vector V here is just the Reeb vector field, while the Jacobi bivector
can be defined through:

ιπ(ξ)η = 0 ,∀ξ ∈ Γ(T ∗T ) ,
ιπ(ξ) dη = −ξ + (ιV ξ)η ,∀ξ ∈ Γ(T ∗T ) .

In Darboux coordinates:

π =
(
∂

∂qi + pi
∂

∂S

)
∧ ∂

∂pi
.
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The Hamiltonian vector field can be written in terms of Jacobi bivector
and Reeb vector field:

XH = −π(H, ·)−HV ,

while the time evolution of arbitrary function along a trajectory is
determined by a Jacobi bracket:

dF
dt = {F ,H}J −HV (F ) ,

where the Jacobi bracket of two functions is defined as:

{f , g}J = π(f , g) .

Note that the Jacobi bracket does not satisfy the Jacobi identity. Instead
we have:

{{f1, f2}J, f3}J + c.p. = −1
2 ({f 1, f 2}JιV df3 + c.p.)
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Examples
Separable contact Hamiltonians:

H(q, p,S) = H(q, p) + h(S) .

This kind of Hamiltonians give friction forces propor-
tional to velocities.

The function h controls the time evolution of mechanical
energy:

dH
dt = −pi

∂H
∂pi

∂h
∂S

1-dimensional particle with a friction force proportional to the square of
the velocity:

H(q, p,S) = 1
2m (p + 2γS)2 + e−2γq

∫ q
e2γq′ ∂V (q′)

∂q′ dq′
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Dissipative time-dependent systems

We extend the contact phase space T into TE = T × R to include time
dependence. We also extend the contact 1-form into:

ηE = dS − pi dqi +H(q, p, S, t) dt

Hamiltonian vector field:

LXE
H
ηE = f ηE , ιXE

H
ηE = 0 ,

XE
H = XH + ∂

∂t

Equations of motion have the same form as before, just with addition of
ṫ = 1 which tells us that t can be used as a parameter on the trajectory.
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Time-dependent contact transformations:

f ( dS − pi dqi +H dt) = dS ′ − Pi dQi +K dt

f = ∂S ′
∂S , fpi = −∂S ′

∂qi , Pi = ∂S ′
∂Qi , K = fH− ∂S ′

∂t

Caldirola-Kanai transformation is an example of the time-dependent
contact transformation:

H(q, p,S, t) = p2

2m + V (q) + γS ,

(q, p, S, t)→ (qCK = q, pCK = eγtp,S ′ = eγtS, t) ,

K = eγt(H− γS) = p2
CK
2m e−γt + V (qCK )eγt .

The geometric structure of the extended contact phase space:

( dη)n+1 6= 0→ symplectic manifold
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Conclusions and Outlook

Any classical system can be described in terms of the Hamiltonian
formulation.
There is a geometric description for the dynamics of any classical
system.

While this formulation gives a geometric description for any classical
system, it is still unclear what role does it play in the quantization of
dissipative systems.
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